enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    This model is developed from 16 years of radio tracking data from Mars Global Surveyor (MGS), Mars Odyssey and Mars Reconnaissance Orbiter (MRO), as well as the MOLA topography model and provides a global resolution of 115 km. [13] A separate free-air gravity anomaly map, Bouguer gravity anomaly map and a map of crustal thickness were produced ...

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  4. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]

  5. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  6. Talk:List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/Talk:List_of_Solar_System...

    A quick way to estimate the surface gravity of any object in the Solar System is to make a ratio of the Radius X Density of the object of interest divided by the Radius X Density of the Earth. The Earth Radius X Density is 6371.0084 X 5.5136 = 35,127.19191 (km)x(kg.m^3), this becomes the denominator.

  7. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.

  8. Deimos (moon) - Wikipedia

    en.wikipedia.org/wiki/Deimos_(moon)

    Deimos (/ ˈ d aɪ m ə s /; systematic designation: Mars II) [11] is the smaller and outer of the two natural satellites of Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. [5] Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. [12]

  9. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    If its mass is no more than 5 times that of the Earth, as is expected, [6] and if it is a rocky planet with a large iron core, it should have a radius approximately 50% larger than that of Earth. [7] [8] Gravity on such a planet's surface would be approximately 2.2 times as strong as on Earth. If it is an icy or watery planet, its radius might ...