Search results
Results from the WOW.Com Content Network
Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre , is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule , which is not used for torque.
The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units.
The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces
The jump in acceleration equals the force on the mass divided by the mass. That is, each time the mass passes through a minimum or maximum displacement, the mass experiences a discontinuous acceleration, and the jerk contains a Dirac delta until the mass stops.
Absorbed dose received per unit of time Gy/s L 2 T −3: Action: S: Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg ...
If an object with weight mg is displaced upwards or downwards a vertical distance y 2 − y 1, the work W done on the object is: = = = where F g is weight (pounds in imperial units, and newtons in SI units), and Δy is the change in height y. Notice that the work done by gravity depends only on the vertical movement of the object.
Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.
The gravitational torque between the Moon and the tidal bulge of Earth causes the Moon to be constantly promoted to a slightly higher orbit (~3.8 cm per year) and Earth to be decelerated (by −25.858 ± 0.003″/cy²) in its rotation (the length of the day increases by ~1.7 ms per century, +2.3 ms from tidal effect and −0.6 ms from post ...