enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  4. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.

  5. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity. The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components.

  6. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  7. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    Any solution of the free Dirac equation is, for each of its four components, a solution of the free Klein–Gordon equation. Despite historically it was invented as a single particle equation the Klein–Gordon equation cannot form the basis of a consistent quantum relativistic one-particle theory, any relativistic theory implies creation and ...

  8. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    Relativistic mass and rest mass are both traditional concepts in physics, but the relativistic mass corresponds to the total energy. The relativistic mass is the mass of the system as it would be measured on a scale, but in some cases (such as the box above) this fact remains true only because the system on average must be at rest to be weighed ...

  9. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    In special relativity, four-momentum (also called momentum–energy or momenergy [1]) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions ; similarly four-momentum is a four-vector in spacetime .