Search results
Results from the WOW.Com Content Network
The series is expressed as the sum of deterministic trend, random walk, and stationary error, and the test is the Lagrange multiplier test of the hypothesis that the random walk has zero variance. KPSS-type tests are intended to complement unit root tests , such as the Dickey–Fuller tests .
A portmanteau test is a type of statistical hypothesis test in which the null hypothesis is well specified, but the alternative hypothesis is more loosely specified. Tests constructed in this context can have the property of being at least moderately powerful against a wide range of departures from the null hypothesis.
In statistics, the Phillips–Perron test (named after Peter C. B. Phillips and Pierre Perron) is a unit root test. [1] That is, it is used in time series analysis to test the null hypothesis that a time series is integrated of order 1.
The Ljung–Box test (named for Greta M. Ljung and George E. P. Box) is a type of statistical test of whether any of a group of autocorrelations of a time series are different from zero. Instead of testing randomness at each distinct lag, it tests the "overall" randomness based on a number of lags, and is therefore a portmanteau test.
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
The procedure works by assessing whether the observed departure, measured by the test statistic, is larger than a value defined, so that the probability of occurrence of a more extreme value is small under the null hypothesis (usually in less than either 5% or 1% of similar data-sets in which the null hypothesis does hold). If the data do not ...
Since the test is done over the residual term rather than raw data, it is not possible to use standard t-distribution to provide critical values. Therefore, this statistic has a specific distribution simply known as the Dickey–Fuller table. There are three main versions of the test: 1. Test for a unit root:
Many algorithms to generate surrogate data have been proposed. They are usually classified in two groups: [4] Typical realizations: data series are generated as outputs of a well-fitted model to the original data. Constrained realizations: data series are created directly from original data, generally by some suitable transformation of it.