enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    Arnold Sommerfeld derived the relativistic solution of atomic energy levels. [5] We will start this derivation [ 10 ] with the relativistic equation for energy in the electric potential W = m 0 c 2 ( 1 1 − v 2 c 2 − 1 ) − k Z e 2 r {\displaystyle W={m_{\mathrm {0} }c^{2}}\left({\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-1\right)-k{\frac ...

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  5. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The equation is often written this way because the difference is the relativistic length of the energy momentum four-vector, a length which is associated with rest mass or invariant mass in systems. Where m > 0 and p = 0, this equation again expresses the mass–energy equivalence E = m.

  6. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant .

  7. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    These two types of relativistic particles are remarked as massless and massive, respectively. In experiments, massive particles are relativistic when their kinetic energy is comparable to or greater than the energy = corresponding to their rest mass. In other words, a massive particle is relativistic when its total mass-energy is at least twice ...

  8. Relativistic dynamics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_dynamics

    The development of non-relativistic quantum mechanics in the early twentieth century preserved the Newtonian concept of time in the Schrödinger equation. The ability of non-relativistic quantum mechanics and special relativity to successfully describe observations motivated efforts to extend quantum concepts to the relativistic domain.

  9. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The relativistic four-velocity, that is the four-vector representing velocity in relativity, is defined as follows: = = (,) In the above, is the proper time of the path through spacetime, called the world-line, followed by the object velocity the above represents, and