Search results
Results from the WOW.Com Content Network
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption , emission , and scattering processes.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
The transfer of energy from the low wavenumbers to the high wavenumbers is the energy cascade. This transfer brings turbulence kinetic energy from the large scales to the small scales, at which viscous friction dissipates it. In the intermediate range of scales, the so-called inertial subrange, Kolmogorov's hypotheses lead to the following ...
Poynting's theorem essentially says that the difference between the electromagnetic energy entering a region and the electromagnetic energy leaving a region must equal the energy converted or dissipated in that region, that is, turned into a different form of energy (often heat). So if one accepts the validity of the Poynting vector description ...
It was introduced by Arnold Sommerfeld in 1912 [1] and is closely related to the limiting absorption principle (1905) and the limiting amplitude principle (1948). The boundary condition established by the principle essentially chooses a solution of some wave equations which only radiates outwards from known sources.
Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]
Light transport theory incorporates both wave-based and particle-based descriptions of light. While wave-based models rely on the principles of Maxwell's equations , particle models use ray optics and Monte Carlo methods to simulate light paths.
Energy flux is the rate of transfer of energy through a surface. The quantity is defined in two different ways, depending on the context: Total rate of energy transfer (not per unit area); [1] SI units: W = J⋅s −1. Specific rate of energy transfer (total normalized per unit area); [2] SI units: W⋅m −2 = J⋅m −2 ⋅s −1: