Search results
Results from the WOW.Com Content Network
If the magnet is aligned with the magnetic field, corresponding to two magnets oriented in the same direction near the poles, then it will be drawn into the larger magnetic field. If it is oppositely aligned, such as the case of two magnets with like poles facing each other, then the magnet will be repelled from the region of higher magnetic field.
Magnetic materials and systems are able to attract or repel each other with a force dependent on the magnetic field and the area of the magnets. For example, the simplest example of lift would be a simple dipole magnet positioned in the magnetic fields of another dipole magnet, oriented with like poles facing each other, so that the force ...
The magnetic pole model: two opposing poles, North (+) and South (−), separated by a distance d produce a H-field (lines). Historically, early physics textbooks would model the force and torques between two magnets as due to magnetic poles repelling or attracting each other in the same manner as the Coulomb force between electric charges. At ...
Correlated magnets can be programmed to interact only with other magnetic structures that have been coded to respond. Correlated magnets can even be programmed to attract and repel at the same time. Compared to conventional magnets, the correlated magnet provides much stronger holding force to the target and stronger shear resistance.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism .
By the 1940s, magnetic north had moved northwest from its 1831 position by about 250 miles (400 kilometers). In 1948, it reached Prince Wales Island, and by 2000 it had departed Canadian shores.
The magnetic force produced by a bar magnet, at a given point in space, therefore depends on two factors: the strength p of its poles (magnetic pole strength), and the vector separating them. The magnetic dipole moment m is related to the fictitious poles as [ 7 ] m = p ℓ . {\displaystyle \mathbf {m} =p\,\mathrm {\boldsymbol {\ell }} \,.}
These islands are manually arranged to create a two-dimensional analog to spin ice. The magnetic moments of the ordered ‘spin’ islands were imaged with magnetic force microscopy (MFM) and then the local accommodation of frustration was thoroughly studied. In their previous work on a square lattice of frustrated magnets, they observed both ...