Search results
Results from the WOW.Com Content Network
Glycoside hydrolases can also be classified according to the stereochemical outcome of the hydrolysis reaction: thus they can be classified as either retaining or inverting enzymes. [6] Glycoside hydrolases can also be classified as exo or endo acting, dependent upon whether they act at the (usually non-reducing) end or in the middle ...
Glycoside hydrolases (O-Glycosyl hydrolases) EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety.
In molecular biology, glycoside hydrolase family 78 is a family of glycoside hydrolases. Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on ...
[10] α-Glucosidase is a carbohydrate-hydrolase that releases α-glucose as opposed to β-glucose. β-Glucose residues can be released by glucoamylase, a functionally similar enzyme. The substrate selectivity of α-glucosidase is due to subsite affinities of the enzyme's active site. [ 11 ]
In molecular biology, glycoside hydrolase family 3 is a family of glycoside hydrolases. Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on ...
In molecular biology, glycoside hydrolase family 32 is a family of glycoside hydrolases EC 3.2.1., which are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity ...
The first glycosynthase was a retaining exoglycosidase that catalyzed the formation of β 1-4 linked glycosides of glucose and galactose. Glycosynthase enzymes have since been expanded to include mutants of endoglycosidase, [7] as well as mutants of inverting glycosidase. [8]
Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]