enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  4. Formulations of special relativity - Wikipedia

    en.wikipedia.org/wiki/Formulations_of_special...

    This theory made many predictions which have been experimentally verified, including the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession.

  5. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    They confirmed relativity with an upper limit for deviations of ~0.00037. [8] Also measurements of the charge-to-mass ratio and thus momentum of protons have been conducted. Grove and Fox (1953) measured 385-MeV protons moving at ~0.7c. Determination of the angular frequencies and of the magnetic field provided the charge-to-mass ratio.

  6. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    Taking this formula at face value, we see that in relativity, mass is simply energy by another name (and measured in different units). In 1927 Einstein remarked about special relativity, "Under this theory mass is not an unalterable magnitude, but a magnitude dependent on (and, indeed, identical with) the amount of energy." [5]

  7. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.

  8. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and ′ of the Lorentz transformation with respect to and ′, from which the transformation of three-velocity (also called velocity-addition formula) between and ′ follows, and eventually by another differentiation with respect to and ′ the transformation of three-acceleration ...

  9. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.