enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    In the absence of a net external force, the center of mass moves at a constant speed in a straight line. This applies, for example, to a collision between two bodies. [49] If the total external force is not zero, then the center of mass changes velocity as though it were a point body of mass . This follows from the fact that the internal forces ...

  3. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    An example of static friction is the force that prevents a car wheel from slipping as it rolls on the ground. Even though the wheel is in motion, the patch of the tire in contact with the ground is stationary relative to the ground, so it is static rather than kinetic friction. Upon slipping, the wheel friction changes to kinetic friction.

  4. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    [3] Because Newton generally referred to mass times velocity as the "motion" of a particle, the phrase "change of motion" refers to the mass times acceleration of the particle, and so this law is usually written as =, where F is understood to be the only external force acting on the particle, m is the mass of the particle, and a is its ...

  5. Tribology - Wikipedia

    en.wikipedia.org/wiki/Tribology

    These laws were further developed by Charles-Augustin de Coulomb (in 1785), who noticed that static friction force may depend on the contact time and sliding (kinetic) friction may depend on sliding velocity, normal force and contact area. [5] [6] In 1798, Charles Hatchett and Henry Cavendish carried out the first reliable test on frictional wear.

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s. Note that since the excess force increases as R 3 and Stokes' drag increases as R , the terminal velocity increases as R 2 and thus varies greatly with particle size as shown below.

  7. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  8. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    The force on the mass is equal to the vector sum of the spring force and the kinetic frictional force. When the velocity changes sign (at the maximum and minimum displacements), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses ...

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]