Search results
Results from the WOW.Com Content Network
A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.
x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...
Peter Lawrence Montgomery (September 25, 1947 – February 18, 2020) was an American mathematician who worked at the System Development Corporation and Microsoft Research.He is best known for his contributions to computational number theory and mathematical aspects of cryptography, including the Montgomery multiplication method for arithmetic in finite fields, the use of Montgomery curves in ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
A Montgomery curve of equation = + +. A Montgomery curve over a field K is defined by the equation,: = + + for certain A, B ∈ K and with B(A 2 − 4) ≠ 0.. Generally this curve is considered over a finite field K (for example, over a finite field of q elements, K = F q) with characteristic different from 2 and with A ≠ ±2 and B ≠ 0, but they are also considered over the rationals with ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
Example: 100P can be written as 2(2[P + 2(2[2(P + 2P)])]) and thus requires six point double operations and two point addition operations. 100P would be equal to f(P, 100). This algorithm requires log 2 (d) iterations of point doubling and addition to compute the full point multiplication. There are many variations of this algorithm such as ...
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.