Search results
Results from the WOW.Com Content Network
The cosine of the hour angle (cos(h)) is used to calculate the solar zenith angle. At solar noon, h = 0.000 so cos(h) = 1, and before and after solar noon the cos(± h) term = the same value for morning (negative hour angle) or afternoon (positive hour angle), so that the Sun is at the same altitude in the sky at 11:00AM and 1:00PM solar time. [5]
One sidereal hour (approximately 0.9973 solar hours) later, Earth's rotation will carry the star to the west of the meridian, and its hour angle will be 1 h. When calculating topocentric phenomena, right ascension may be converted into hour angle as an intermediate step.
More exactly, sidereal time is the angle, measured along the celestial equator, from the observer's meridian to the great circle that passes through the March equinox (the northern hemisphere's vernal equinox) and both celestial poles, and is usually expressed in hours, minutes, and seconds.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Animation showing equation of time and analemma path over one year.. The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative.
Sidereal time is the hour angle of the equinox. However, there are two types: if the mean equinox is used (that which only includes precession), it is called mean sidereal time; if the true equinox is used (the actual location of the equinox at a given instant), it is called apparent sidereal time.
Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...
The equation above neglects the influence of atmospheric refraction (which lifts the solar disc — i.e. makes the solar disc appear higher in the sky — by approximately 0.6° when it is on the horizon) and the non-zero angle subtended by the solar disc — i.e. the apparent diameter of the sun — (about 0.5°). The times of the rising and ...