Search results
Results from the WOW.Com Content Network
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In statistics, a unit root test tests whether a time series variable is non-stationary and possesses a unit root. The null hypothesis is generally defined as the presence of a unit root and the alternative hypothesis is either stationarity , trend stationarity or explosive root depending on the test used.
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
The root of the equation is =. If the process has a unit root, then it is a non-stationary time series. That is, the moments of the stochastic process depend on . To illustrate the effect of a unit root, we can consider the first order case, starting from y 0 = 0:
The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.
Fourier's theorem on polynomial real roots, also called the Fourier–Budan theorem or the Budan–Fourier theorem (sometimes just Budan's theorem) is exactly the same as Budan's theorem, except that, for h = l and r, the sequence of the coefficients of p(x + h) is replaced by the sequence of the derivatives of p at h.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.