Search results
Results from the WOW.Com Content Network
It is possibly a good example of a mathematical model as it deals with simple calculus but gives valid results. Two research groups [1] [2] have produced several models of the cell cycle simulating several organisms. They have recently produced a generic eukaryotic cell cycle model which can represent a particular eukaryote depending on the ...
The Ising model is a prototypical example, in which each cell can be in either of two states called "up" and "down", making an idealized representation of a magnet. By adjusting the parameters of the model, the proportion of cells being in the same state can be varied, in ways that help explicate how ferromagnets become demagnetized when heated.
The matrix and the vector can be represented with respect to a right-handed or left-handed coordinate system. Throughout the article, we assumed a right-handed orientation, unless otherwise specified. Vectors or forms The vector space has a dual space of linear forms, and the matrix can act on either vectors or forms.
The cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f . Cokernels are dual to the kernels of category theory , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel ...
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
The dimension of this vector space, if it exists, [a] is called the degree of the extension. For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b]
The set of tempered distributions forms a vector subspace of the space of distributions ′ and is thus one example of a space of distributions; there are many other spaces of distributions. There also exist other major classes of test functions that are not subsets of C c ∞ ( U ) , {\displaystyle C_{c}^{\infty }(U),} such as spaces of ...
When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.