Search results
Results from the WOW.Com Content Network
A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise is cP. The abbreviations cps, cp, and cPs are sometimes seen. Liquid water has a viscosity of 0.00890 P at 25 °C at a pressure of 1 atmosphere (0.00890 P = 0.890 cP = 0.890 mPa⋅s).
The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1 ), named after Sir ...
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A simple and widespread empirical correlation for liquid viscosity is a two-parameter exponential: = / This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade). It accurately describes many liquids over a range of temperatures.
This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules.
The school experiment uses glycerine or golden syrup as the fluid, and the technique is used industrially to check the viscosity of fluids used in processes. Several school experiments often involve varying the temperature and/or concentration of the substances used in order to demonstrate the effects this has on the viscosity.
A Zahn cup is a viscosity measurement device used in the paint industry. It is commonly a stainless steel cup with a tiny hole drilled in the centre of the bottom of the cup. There is also a long handle attached to the sides. There are five cup specifications, labelled Zahn cup #x, where x is the number from one through five (see table below).