Search results
Results from the WOW.Com Content Network
Vapor pressure [a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate.
Köhler theory combines the Kelvin effect, which describes the change in vapor pressure due to a curved surface, with Raoult's Law, which relates the vapor pressure to the solute concentration. [ 1 ] [ 2 ] [ 3 ] It was initially published in 1936 by Hilding Köhler , Professor of Meteorology in the Uppsala University.
The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...
On the left-hand vertical axis, locate and mark the point containing the pressure 100 psia. On the right-hand vertical axis, locate and mark the point containing the temperature 60°F. Connect the points with a straight line. Note where the line crosses the methane axis. Read this K-value off the chart (approximately 21.3).
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
The Arden Buck equations are a group of empirical correlations that relate the saturation vapor pressure to temperature for moist air. The curve fits have been optimized for more accuracy than the Goff–Gratch equation in the range −80 to 50 °C (−112 to 122 °F).
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The original reason for starting a vapor–liquid phase equilibria data collection was the development [2] of the group contribution method UNIFAC which allows to estimate vapor pressures of mixtures. The DDB has since been extended to many other properties and has increased dramatically in size also because of intensive (German) government aid.