enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave polygon - Wikipedia

    en.wikipedia.org/wiki/Concave_polygon

    It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polygons as possible is described by Chazelle & Dobkin (1985). [5] A triangle can never be concave, but there exist concave polygons with n sides for any n > 3.

  3. Equilateral polygon - Wikipedia

    en.wikipedia.org/wiki/Equilateral_polygon

    Except in the triangle case, an equilateral polygon does not need to also be equiangular (have all angles equal), but if it does then it is a regular polygon. If the number of sides is at least four, an equilateral polygon does not need to be a convex polygon: it could be concave or even self-intersecting.

  4. Rectilinear polygon - Wikipedia

    en.wikipedia.org/wiki/Rectilinear_polygon

    A rectilinear polygon has corners of two types: corners in which the smaller angle (90°) is interior to the polygon are called convex and corners in which the larger angle (270°) is interior are called concave. [1] A knob is an edge whose two endpoints are convex corners. An antiknob is an edge whose two endpoints are concave corners. [1]

  5. Fan triangulation - Wikipedia

    en.wikipedia.org/wiki/Fan_Triangulation

    Fan triangulation of a convex polygon Fan triangulation of a concave polygon with a unique concave vertex.. In computational geometry, a fan triangulation is a simple way to triangulate a polygon by choosing a vertex and drawing edges to all of the other vertices of the polygon.

  6. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    The 42 possible triangulations for a convex heptagon (7-sided convex polygon). This number is given by the 5th Catalan number. It is trivial to triangulate any convex polygon in linear time into a fan triangulation, by adding diagonals from one vertex to all other non-nearest neighbor vertices.

  7. Equilateral pentagon - Wikipedia

    en.wikipedia.org/wiki/Equilateral_pentagon

    Convex equilateral pentagon dissected into 3 triangles, which helps to calculate the value of angle δ as a function of α and β. When a convex equilateral pentagon is dissected into triangles, two of them appear as isosceles (triangles in orange and blue) while the other one is more general (triangle in green).

  8. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed. If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a vertex. Because p and q are coprime, there exists integers a and b such that ap + bq = 1. Then 2aπ/q + 2bπ/p = 2π/pq.

  9. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    Alternatively, a Reuleaux triangle may be constructed from an equilateral triangle T by drawing three arcs of circles, each centered at one vertex of T and connecting the other two vertices. [9] Or, equivalently, it may be constructed as the intersection of three disks centered at the vertices of T, with radius equal to the side length of T. [10]