Search results
Results from the WOW.Com Content Network
Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...
Thin supercritical wing section and swept-back wing can postpone shock stall to higher speed. [1] A stall is the decrease in lift to a value below the weight, and the associated increase in drag upon the separation of the boundary layer (in this case behind the shock wave).
A different area rule, known as the supersonic area rule, developed by NACA aerodynamicist Robert Jones in "Theory of wing-body drag at supersonic speeds", [2] is applicable at speeds beyond transonic, and in this case, the cross-sectional area requirement is established with relation to the angle of the Mach cone for the design speed.
Years of research and experience with the unusual conditions of supersonic flow have led to some interesting conclusions about airfoil design. Considering a rectangular wing, the pressure at a point P with coordinates (x,y) on the wing is defined only by the pressure disturbances originated at points within the upstream Mach cone emanating from point P. [3] As result, the wing tips modify the ...
The supercritical airfoil is a type that results in reasonable low speed lift like a normal airfoil, but has a profile considerably closer to that of the von Kármán ogive. All modern civil airliners use forms of supercritical aerofoil and have substantial supersonic flow over the wing upper surface.
Clark Y is the name of a particular airfoil profile, widely used in general purpose aircraft designs, and much studied in aerodynamics over the years. The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1]
Payoff chart from buying a butterfly spread. Profit from a long butterfly spread position. The spread is created by buying a call with a relatively low strike (x 1), buying a call with a relatively high strike (x 3), and shorting two calls with a strike in between (x 2).