Search results
Results from the WOW.Com Content Network
direction: unitless impact parameter meter (m) differential (e.g. ) varied depending on context differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S: square meter (m 2) differential element of volume V enclosed by surface S
The external forces: These are indicated by labelled arrows. In a fully solved problem, a force arrow is capable of indicating the direction and the line of action [notes 1] the magnitude; the point of application; a reaction, as opposed to an applied force, if a hash is present through the stem of the arrow
The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics.
The bending force is computed by the vector cross-product. This means that the bending force increases with the velocity of the particle and the strength of the magnetic field. The force is maximum when the particle direction and magnetic fields are perpendicular, is less at any other angle, and is zero when the particle moves parallel to the ...
In physics, a force is considered a vector quantity. This means that it not only has a size (or magnitude) but also a direction in which it acts. We typically represent force with the symbol F in boldface, or sometimes, we place an arrow over the symbol to indicate its vector nature, like this: .
A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application (or point of contact). Thus, force is a vector quantity, because its effect depends on the direction as well as on the magnitude ...
Quantity Unit Remarks Name Symbol Name Symbol Definition Force: F: newton: N 1 N = 1 kg·m/s 2: Unit named after Isaac Newton: Moment of force, Torque: M, : N·m 1 N·m = 1 kg·m 2 /s 2: The unit is dimensionally equivalent to the units of energy, the joule; but the joule should not be used as an alternative for the newton metre.
In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the displacement vector and the force vector. The direction of the torque can be determined by using the right hand grip rule: if the fingers of the right hand are curled from the direction of the lever arm to the direction of the force ...