Search results
Results from the WOW.Com Content Network
In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities).
The rain-out model is a model of planetary science that describes the first stage of planetary differentiation and core formation. According to this model, a planetary body is assumed to be composed primarily of silicate minerals and NiFe (i.e. a mixture of nickel and iron). If temperatures within this body reach about 1500 K, the minerals and ...
The table below contains information about the coordinates, spectral and physical properties, and the number of confirmed (unconfirmed) planets for systems with at least 2 planets and 1 not confirmed. The two most important stellar properties are mass and metallicity because they determine how these planetary systems form. Systems with higher ...
A planetary core acts as a heat source for the outer layers of a planet. In the Earth, the heat flux over the core mantle boundary is 12 terawatts. [30] This value is calculated from a variety of factors: secular cooling, differentiation of light elements, Coriolis forces, radioactive decay, and latent heat of crystallization. [30]
A major source of differentiation is fractionation, an unequal distribution of elements and isotopes. This can be the result of chemical reactions, phase changes, kinetic effects, or radioactivity. [1]: 2–3 On the largest scale, planetary differentiation is a physical and chemical separation of a planet into chemically distinct regions. For ...
The heat is generated by potential energy released by heavier materials sinking toward the core (planetary differentiation, the iron catastrophe) as well as decay of radioactive elements in the interior. The pattern of flow is organized by the rotation of the Earth and the presence of the solid inner core. [57]
World leaders are meeting in Paris this month in what amounts to a last-ditch effort to avert the worst ravages of climate change. Climatologists now say that the best case scenario — assuming immediate and dramatic emissions curbs — is that planetary surface temperatures will increase by at least 2 degrees Celsius in the coming decades.
Core formation, also referred to as metal-silicate differentiation, is the separation of metallic components from silicate in the magma that sink to form a planetary core. [1] Accretionary impacts that produce heat for the melting of planet embryos and large terrestrial planets have an estimated timescale of tens to hundreds of millions of years.