Search results
Results from the WOW.Com Content Network
The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:
A square matrix derived by applying an elementary row operation to the identity matrix. Equivalent matrix: A matrix that can be derived from another matrix through a sequence of elementary row or column operations. Frobenius matrix: A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.
The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory.For example, if A is the adjacency matrix of an n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA. [7]
We denote the n×n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the ...
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Identity ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
The transpose A T is an invertible matrix. A is row-equivalent to the n-by-n identity matrix I n. A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly ...
In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GL n ( F ) when F is a field .