enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Indeed, Voronoi tessellations work as a geometrical tool to understand the physical constraints that drive the organization of biological tissues. [22] In hydrology, Voronoi diagrams are used to calculate the rainfall of an area, based on a series of point measurements. In this usage, they are generally referred to as Thiessen polygons.

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied.

  4. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling). English mathematician John Conway called it a hextille.

  5. Schläfli symbol - Wikipedia

    en.wikipedia.org/wiki/Schläfli_symbol

    The Schläfli symbol can represent a finite convex polyhedron, an infinite tessellation of Euclidean space, or an infinite tessellation of hyperbolic space, depending on the angle defect of the construction. A positive angle defect allows the vertex figure to fold into a higher dimension and loops back into itself as a polytope. A zero angle ...

  6. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

  7. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.

  8. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    This makes it impossible to generate a covered plane given the notation alone. And second, some tessellations have the same nomenclature, they are very similar but it can be noticed that the relative positions of the hexagons are different. Therefore, the second problem is that this nomenclature is not unique for each tessellation.

  9. Edge tessellation - Wikipedia

    en.wikipedia.org/wiki/Edge_tessellation

    In geometry, an edge tessellation is a partition of the plane into non-overlapping polygons (a tessellation) with the property that the reflection of any of these polygons across any of its edges is another polygon in the tessellation.