enow.com Web Search

  1. Ad

    related to: point vs line symmetry in math

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    The axis of symmetry of a two-dimensional figure is a line such that, if a perpendicular is constructed, any two points lying on the perpendicular at equal distances from the axis of symmetry are identical. Another way to think about it is that if the shape were to be folded in half over the axis, the two halves would be identical as mirror ...

  3. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6] An object has rotational symmetry if the object can be rotated about a fixed point (or in 3D about a line) without changing the overall shape. [7]

  4. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  5. Reflection symmetry - Wikipedia

    en.wikipedia.org/wiki/Reflection_symmetry

    In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry

  6. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    A point reflection is an involution: applying it twice is the identity transformation. An object that is invariant under a point reflection is said to possess point symmetry (also called inversion symmetry or central symmetry). A point group including a point reflection among its symmetries is called centrosymmetric.

  7. Point group - Wikipedia

    en.wikipedia.org/wiki/Point_group

    In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d).

  8. Symmetry operation - Wikipedia

    en.wikipedia.org/wiki/Symmetry_operation

    In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.

  9. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    The number of non-absolute points (lines) incident with a non-absolute line (point) is even. Furthermore, [18] The polarity π has at least n + 1 absolute points and if n is not a square, exactly n + 1 absolute points. If π has exactly n + 1 absolute points then; if n is odd, the absolute points form an oval whose tangents are the absolute ...

  1. Ad

    related to: point vs line symmetry in math