enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prokaryotic large ribosomal subunit - Wikipedia

    en.wikipedia.org/wiki/Prokaryotic_large...

    50S, roughly equivalent to the 60S ribosomal subunit in eukaryotic cells, is the larger subunit of the 70S ribosome of prokaryotes. The 50S subunit is primarily composed of proteins but also contains single-stranded RNA known as ribosomal RNA (rRNA). rRNA forms secondary and tertiary structures to maintain the structure and carry out the catalytic functions of the ribosome.

  3. Ribosome biogenesis - Wikipedia

    en.wikipedia.org/wiki/Ribosome_biogenesis

    Ribosomes are the macromolecular machines that are responsible for mRNA translation into proteins. The eukaryotic ribosome, also called the 80S ribosome, is made up of two subunits – the large 60S subunit (which contains the 25S [in plants] or 28S [in mammals], 5.8S, and 5S rRNA and 46 ribosomal proteins) and a small 40S subunit (which contains the 18S rRNA and 33 ribosomal proteins). [6]

  4. Ribosomal protein - Wikipedia

    en.wikipedia.org/wiki/Ribosomal_protein

    A ribosomal protein (r-protein or rProtein [1] [2] [3]) is any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in the cellular process of translation. E. coli, other bacteria and Archaea have a 30S small subunit and a 50S large subunit, whereas humans and yeasts have a 40S small subunit and a 60S large ...

  5. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    In addition to ribosome dimerization, the joining of the two ribosomal subunits can be blocked by RsfS (formerly called RsfA or YbeB). [27] RsfS binds to L14, a protein of the large ribosomal subunit, and thereby blocks joining of the small subunit to form a functional 70S ribosome, slowing down or blocking translation entirely.

  6. Ribosome - Wikipedia

    en.wikipedia.org/wiki/Ribosome

    Since their catalytic core is made of RNA, ribosomes are classified as "ribozymes," [52] and it is thought that they might be remnants of the RNA world. [53] Figure 5: Translation of mRNA (1) by a ribosome (2)(shown as small and large subunits) into a polypeptide chain (3). The ribosome begins at the start codon of RNA (AUG) and ends at the ...

  7. Peptidyl transferase center - Wikipedia

    en.wikipedia.org/wiki/Peptidyl_transferase_center

    The peptidyl transferase center is a significant piece of evidence supporting the RNA World hypothesis. [2] In prokaryotes, the 50S (23S component) ribosomal subunit contains the peptidyl transferase center and acts as a ribozyme. The peptidyl transferase center on the 50S subunit lies at the lower tips (acceptor ends) of the A- and P- site tRNAs.

  8. Ribosomal RNA - Wikipedia

    en.wikipedia.org/wiki/Ribosomal_RNA

    Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the ...

  9. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    The process is similar to that of bacterial termination, but unlike bacterial termination, there is a universal release factor, eRF1, that recognizes all three stop codons. Upon termination, the ribosome is disassembled and the completed polypeptide is released. eRF3 is a ribosome-dependent GTPase that helps eRF1 release the completed polypeptide.