Search results
Results from the WOW.Com Content Network
The absolute difference is used to define other quantities including the relative difference, the L 1 norm used in taxicab geometry, and graceful labelings in graph theory. When it is desirable to avoid the absolute value function – for example because it is expensive to compute, or because its derivative is not continuous – it can ...
The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean , and equal to twice the ...
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference. Thus if p {\displaystyle p} and q {\displaystyle q} are two points on the real line, then the distance between them is given by: [ 1 ]
To calculate the SAD values, the absolute value of the difference between each corresponding pair of pixels is used: the difference between 2 and 2 is 0, 4 and 1 is 3, 7 and 8 is 1, and so forth. Calculating the values of the absolute differences for each pixel, for the three possible template locations, gives the following:
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
As noted above, the absolute value of a real or complex number is the distance from that number to the origin, along the real number line, for real numbers, or in the complex plane, for complex numbers, and more generally, the absolute value of the difference of two real or complex numbers is the distance between them.
Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [ 4 ]
In some disciplines, the RMSD is used to compare differences between two things that may vary, neither of which is accepted as the "standard". For example, when measuring the average difference between two time series x 1 , t {\displaystyle x_{1,t}} and x 2 , t {\displaystyle x_{2,t}} , the formula becomes