Search results
Results from the WOW.Com Content Network
The reversible phosphorylation-dephosphorylation reaction occurs in every physiological process, making proper function of protein phosphatases necessary for organism viability. Because protein dephosphorylation is a key process involved in cell signalling , [ 1 ] protein phosphatases are implicated in conditions such as cardiac disease ...
Serine in an amino acid chain, before and after phosphorylation. In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. [1] This process and its inverse, dephosphorylation, are common in biology. [2] Protein phosphorylation often activates (or deactivates) many enzymes. [3] [4]
[2] The reverse reaction of phosphorylation is called dephosphorylation, and is catalyzed by protein phosphatases. Protein kinases and phosphatases work independently and in a balance to regulate the function of proteins. [3] The amino acids most commonly phosphorylated are serine, threonine, tyrosine, and histidine.
In biochemistry, a kinase (/ ˈ k aɪ n eɪ s, ˈ k ɪ n eɪ s,-eɪ z /) [2] is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule.
Phosphatase enzymes are essential to many biological functions, because phosphorylation (e.g. by protein kinases) and dephosphorylation (by phosphatases) serve diverse roles in cellular regulation and signaling. [2] Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP.
The mobile water-soluble electron carrier is cytochrome c 6 in cyanobacteria, having been replaced by plastocyanin in plants. [8] Cyanobacteria can also synthesize ATP by oxidative phosphorylation, in the manner of other bacteria. The electron transport chain is NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2
Most phosphorylation sites are not linked to a specific phosphatase, so the phosphatome approach allows a global analysis of dephosphorylation, screening to find the phosphatase responsible for a given reaction, and comparative studies between different phosphatases, similar to how protein kinase research has been impacted by the kinome approach.
However, side products are considered waste and removed from the cell. [2] Different metabolic pathways function in the position within a eukaryotic cell and the significance of the pathway in the given compartment of the cell. [3] For instance, the electron transport chain and oxidative phosphorylation all take place in the mitochondrial membrane.