enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  3. Erdős–Mordell inequality - Wikipedia

    en.wikipedia.org/wiki/Erdős–Mordell_inequality

    Barrow's inequality is a strengthened version of the Erdős–Mordell inequality in which the distances from P to the sides are replaced by the distances from P to the points where the angle bisectors of ∠APB, ∠BPC, and ∠CPA cross the sides. Although the replaced distances are longer, their sum is still less than or equal to half the sum ...

  4. Diameter of a set - Wikipedia

    en.wikipedia.org/wiki/Diameter_of_a_set

    Jung's theorem provides more general inequalities relating the diameter to the radius. [5] The isodiametric inequality or Bieberbach inequality, a relative of the isoperimetric inequality, states that, for a given diameter, the planar shape with the largest area is a disk, and the three-dimensional shape with the largest volume is a sphere.

  5. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The reverse triangle inequality is an equivalent alternative formulation of the triangle inequality that gives lower bounds instead of upper bounds. For plane geometry, the statement is: [19] Any side of a triangle is greater than or equal to the difference between the other two sides. In the case of a normed vector space, the statement is:

  6. Weitzenböck's inequality - Wikipedia

    en.wikipedia.org/wiki/Weitzenböck's_inequality

    Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. [1]+ +. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of ...

  7. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  8. Jung's theorem - Wikipedia

    en.wikipedia.org/wiki/Jung's_theorem

    In geometry, Jung's theorem is an inequality between the diameter of a set of points in any Euclidean space and the radius of the minimum enclosing ball of that set. It is named after Heinrich Jung, who first studied this inequality in 1901. Algorithms also exist to solve the smallest-circle problem explicitly.

  9. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    Similarly, 4 √ x 1 x 2 is the perimeter of a square with the same area, x 1 x 2, as that rectangle. Thus for n = 2 the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square. The full inequality is an extension of this idea to n dimensions.