Search results
Results from the WOW.Com Content Network
As exchanging the indices of an array is the essence of array transposition, an array stored as row-major but read as column-major (or vice versa) will appear transposed. As actually performing this rearrangement in memory is typically an expensive operation, some systems provide options to specify individual matrices as being stored transposed.
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
This technique also allows immediate array transposition, index reversal, subsampling, etc. For languages like C, where the indices always start at zero, the dope vector of an array with d indices has at least 1 + 2d parameters. For languages that allow arbitrary lower bounds for indices, like Pascal, the dope vector needs 1 + 3d entries.
Indexes are also called subscripts. An index maps the array value to a stored object. There are three ways in which the elements of an array can be indexed: 0 (zero-based indexing) The first element of the array is indexed by subscript of 0. [8] 1 (one-based indexing) The first element of the array is indexed by subscript of 1. n (n-based indexing)
OFFT - recursive block in-place transpose of square matrices, in Fortran; Jason Stratos Papadopoulos, blocked in-place transpose of square matrices, in C, sci.math.num-analysis newsgroup (April 7, 1998). See "Source code" links in the references section above, for additional code to perform in-place transposes of both square and non-square ...
The second method is used when the number of elements in each row is the same and known at the time the program is written. The programmer declares the array to have, say, three columns by writing e.g. elementtype tablename[][3];. One then refers to a particular element of the array by writing tablename[first index][second index]. The compiler ...
This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A[10][20] or int A[m][n], instead of the traditional int **A. [8]
The indexing expression for a 1-based index would then be ′ +. Hence, the efficiency benefit at run time of zero-based indexing is not inherent, but is an artifact of the decision to represent an array with the address of its first element rather than the address of the fictitious zeroth element.