enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    In supervised learning, the training data is labeled with the expected answers, while in unsupervised learning, the model identifies patterns or structures in unlabeled data. Supervised learning ( SL ) is a paradigm in machine learning where input objects (for example, a vector of predictor variables) and a desired output value (also known as a ...

  3. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision.

  4. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    Self-training is a wrapper method for semi-supervised learning. [14] First a supervised learning algorithm is trained based on the labeled data only. This classifier is then applied to the unlabeled data to generate more labeled examples as input for the supervised learning algorithm.

  5. Machine learning: What’s the difference between supervised ...

    www.aol.com/machine-learning-difference-between...

    Machine learning, the subset of artificial intelligence that teaches computers to perform tasks through examples and experience, is a hot area of research and development. Many of the applications ...

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Some of the training examples are missing training labels, yet many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled ...

  7. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Positive examples are those that match the target. For example, if training a classifier to identify birds, the positive training data would include images that contain birds. Negative examples would be images that do not. [9] Contrastive self-supervised learning uses both positive and negative examples.

  8. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The goals of learning are understanding and prediction. Learning falls into many categories, including supervised learning, unsupervised learning, online learning, and reinforcement learning. From the perspective of statistical learning theory, supervised learning is best understood. [4] Supervised learning involves learning from a training set ...

  9. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Feature learning can be either supervised, unsupervised, or self-supervised: In supervised feature learning , features are learned using labeled input data. Labeled data includes input-label pairs where the input is given to the model, and it must produce the ground truth label as the output. [ 3 ]