Search results
Results from the WOW.Com Content Network
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
The second phase is a slow release of newly formed vesicles that are triggered regardless of the blood sugar level. Glucose enters the beta cells and goes through glycolysis to form ATP that eventually causes depolarization of the beta cell membrane (as explained in Insulin secretion section of this article). The depolarization process causes ...
The brain receives 60-70% of its required energy from ketone bodies when blood glucose levels are low. These bodies are transported into the brain by monocarboxylate transporters 1 and 2. Therefore, ketone bodies are a way to move energy from the liver to other cells.
In Type 2 diabetes, since tissues don’t respond as well to normal levels of insulin, the body ends up producing more insulin in order to get the same effect and move glucose out of the blood. They do this through beta cell hyperplasia, an increased number of beta cells, and beta cell hypertrophy, where they actually grow in size, all in this ...
The brain also uses glucose during starvation, but most of the body's glucose is allocated to the skeletal muscles and red blood cells. The cost of the brain using too much glucose is muscle loss. If the brain and muscles relied entirely on glucose, the body would lose 50% of its nitrogen content in 8–10 days. [13]
The sympathetic division typically functions in actions requiring quick responses. The parasympathetic division functions with actions that do not require immediate reaction. A mnemonic to summarize the functions of the parasympathetic nervous system is SSLUDD (sexual arousal, salivation, lacrimation, urination, digestion and defecation).
Anaerobic exercise is a type of exercise that breaks down glucose in the body without using oxygen; anaerobic means "without oxygen". [1] This type of exercise leads to a buildup of lactic acid. [1] In practical terms, this means that anaerobic exercise is more intense, but shorter in duration than aerobic exercise. [2] Fox and Haskell formula
The sympathetic nervous system is described as being antagonistic to the parasympathetic nervous system. The latter stimulates the body to "feed and breed" and to (then) "rest-and-digest". The SNS has a major role in various physiological processes such as blood glucose levels, body temperature, cardiac output, and immune system function.