Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
A ancillary statistic is a specific case of a pivotal quantity that is computed only from the data and not from the parameters. They can be used to construct prediction intervals. They are also used in connection with Basu's theorem to prove independence between statistics. [4]
The dynamic lot-size model in inventory theory, is a generalization of the economic order quantity model that takes into account that demand for the product varies over time. The model was introduced by Harvey M. Wagner and Thomson M. Whitin in 1958. [1] [2]
Vinod (2006), [31] presents a method that bootstraps time series data using maximum entropy principles satisfying the Ergodic theorem with mean-preserving and mass-preserving constraints. There is an R package, meboot, [32] that utilizes the method, which has applications in econometrics and computer science.
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Developed in 1764 by Gian Rinaldo Carli, an Italian economist, this formula is the arithmetic mean of the price relative between a period t and a base period 0. [The formula does not make clear over what the summation is done.
With BIM quantity take-off can be conducted almost automatically given that the type of materials, their quantity and price is included in the model. [2] It is known that construction projects often run overtime and over budget and one of the reasons is lack of accuracy in quantity takeoff and estimates.
Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]