Search results
Results from the WOW.Com Content Network
The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets.
UT researchers uncovered that stars form through a self-regulatory process — an answer to the mystery scientists have been studying for decades.
Stars can form orbital systems with other astronomical objects, as in planetary systems and star systems with two or more stars. When two such stars orbit closely, their gravitational interaction can significantly impact their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.
Since about half of all known stars form systems of multiple stars and because Jupiter is made of the same elements as the Sun (hydrogen and helium), it has been suggested that the Solar System might have been early in its formation a protostar system with Jupiter being the second but failed protostar, but Jupiter has far too little mass to ...
Massive stars form more rapidly and have shorter lives than less massive stars like the sun. "The formation of high-mass stars has been puzzling astronomers for decades, and so building a picture ...
And such a dense blob should be churning out massive new stars, based on researchers’ current understanding of star formation. But it’s not. The Brick is largely dormant.