enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.

  3. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  4. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix. [2]

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Jordan canonical form — an 'almost' diagonalised matrix, where the only non-zero elements appear on the lead and superdiagonals. Linear independence — two or more vectors are linearly independent if there is no way to construct one from linear combinations of the others. Matrix exponential — defined by the exponential series.

  7. Canonical form - Wikipedia

    en.wikipedia.org/wiki/Canonical_form

    Jordan normal form is a canonical form for matrix similarity. The row echelon form is a canonical form, when one considers as equivalent a matrix and its left product by an invertible matrix . In computer science, and more specifically in computer algebra , when representing mathematical objects in a computer, there are usually many different ...

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    Using the Jordan canonical form A ... Example: Consider the case of an arbitrary 2×2 matrix, := []. The exponential matrix e tA, by virtue of the Cayley ...

  9. Category:Matrix normal forms - Wikipedia

    en.wikipedia.org/wiki/Category:Matrix_normal_forms

    A matrix normal form or matrix canonical form describes the transformation of a matrix to another with special properties. Pages in category "Matrix normal forms" The following 10 pages are in this category, out of 10 total.