Search results
Results from the WOW.Com Content Network
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
The Eötvös experiment was a physics experiment that measured the correlation between inertial mass and gravitational mass, demonstrating that the two were one and the same, something that had long been suspected but never demonstrated with the same accuracy.
The mass–energy equivalence in special relativity refers to the inertial mass. However, already in the context of Newtonian gravity, the weak equivalence principle is postulated: the gravitational and the inertial mass of every object are the same. Thus, the mass–energy equivalence, combined with the weak equivalence principle, results in ...
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
Constraints on this, and on the existence of a composition-dependent fifth force or gravitational Yukawa interaction are very strong, and are discussed under fifth force and weak equivalence principle. A version of the equivalence principle, called the strong equivalence principle, asserts that self-gravitation falling bodies, such as stars ...
The generalization of this statement, namely that the laws of special relativity hold to good approximation in freely falling (and non-rotating) reference frames, is known as the Einstein equivalence principle, a crucial guiding principle for generalizing special-relativistic physics to include gravity. [38]
The weak interaction has a very short effective range (around 10 −17 to 10 −16 m (0.01 to 0.1 fm)). [b] [14] [13] At distances around 10 −18 meters (0.001 fm), the weak interaction has an intensity of a similar magnitude to the electromagnetic force, but this starts to decrease exponentially with increasing distance.
The principle of relativity as expressed by general covariance. The principle of equivalence. Mach's principle (the first time this term entered the literature): … that the g µν are completely determined by the mass of bodies, more generally by T µν.