enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  3. GPOPS-II - Wikipedia

    en.wikipedia.org/wiki/GPOPS-II

    GPOPS-II (pronounced "GPOPS 2") is a general-purpose MATLAB software for solving continuous optimal control problems using hp-adaptive Gaussian quadrature collocation and sparse nonlinear programming.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Many optimization problems can be equivalently formulated in this standard form. For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem.

  5. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering [3] to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. [4] [5]

  7. File:Schaffer function 2 - multi-objective.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Schaffer_function_2...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  8. Minimum degree algorithm - Wikipedia

    en.wikipedia.org/wiki/Minimum_degree_algorithm

    The problem of finding the best ordering is an NP-complete problem and is thus intractable, so heuristic methods are used instead. The minimum degree algorithm is derived from a method first proposed by Markowitz in 1959 for non-symmetric linear programming problems, which is loosely described as follows.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, [1] [2] who programmed it on the Z4, [3] and extensively researched it. [4] [5] The biconjugate gradient method provides a generalization to non-symmetric matrices.