Search results
Results from the WOW.Com Content Network
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.
The class number of a number field is by definition the order of the ideal class group of its ring of integers.. Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain).
The following table shows some orders of small discriminant of quadratic fields. The maximal order of an algebraic number field is its ring of integers, and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the ...
Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.
[6]: 202–207 If one is given a quadratic equation in the form x 2 + bx + c = 0, the sought factorization has the form (x + q)(x + s), and one has to find two numbers q and s that add up to b and whose product is c (this is sometimes called "Vieta's rule" [7] and is related to Vieta's formulas). As an example, x 2 + 5x + 6 factors as (x + 3)(x ...
K is a number field. [K : Q] = n = r 1 + 2r 2, where r 1 denotes the number of real embeddings of K, and 2r 2 is the number of complex embeddings of K. ζ K (s) is the Dedekind zeta function of K. h K is the class number, the number of elements in the ideal class group of K. Reg K is the regulator of K. w K is the number of roots of unity ...
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.