Search results
Results from the WOW.Com Content Network
The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.
The third chart in each set was supplemented by Gröber in 1961, and this particular one shows the dimensionless heat transferred from the wall as a function of a dimensionless time variable. The vertical axis is a plot of Q/Q o, the ratio of actual heat transfer to the amount of total possible heat transfer before T = T ∞.
Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral analysis of the boundary layer and analogies between energy and momentum transfer, these analytic approaches may not offer practical solutions to all problems when there are no mathematical models applicable.
This page describes some parameters used to characterize the properties of the thermal boundary layer formed by a heated (or cooled) fluid moving along a heated (or cooled) wall. In many ways, the thermal boundary layer description parallels the velocity (momentum) boundary layer description first conceptualized by Ludwig Prandtl . [ 1 ]
There is also a measure known as the heat transfer coefficient: the quantity of heat that passes per unit time through a unit area of a plate of particular thickness when its opposite faces differ in temperature by one kelvin. [8] In ASTM C168-15, this area-independent quantity is referred to as the "thermal conductance". [9]
Pr is the Prandtl number. [3] The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).
The film temperature is often used as the temperature at which fluid properties are calculated when using the Prandtl number, Nusselt number, Reynolds number or Grashof number to calculate a heat transfer coefficient, because it is a reasonable first approximation to the temperature within the convection boundary layer.
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .