Search results
Results from the WOW.Com Content Network
Archaea exhibit a great variety of chemical reactions in their metabolism and use many sources of energy. These reactions are classified into nutritional groups, depending on energy and carbon sources. Some archaea obtain energy from inorganic compounds such as sulfur or ammonia (they are chemotrophs).
Due to the absence of sunlight at these ocean depths, energy is provided by chemosynthesis where symbiotic bacteria and archaea form the bottom of the food chain and are able to support a variety of organisms such as Riftia pachyptila and Alvinella pompejana. These organisms use this symbiotic relationship in order to use and obtain the ...
Chemoautotrophs can use inorganic energy sources such as hydrogen sulfide, elemental sulfur, ferrous iron, molecular hydrogen, and ammonia or organic sources to produce energy. Most chemoautotrophs are prokaryotic extremophiles , bacteria , or archaea that live in otherwise hostile environments (such as deep sea vents ) and are the primary ...
It has been proposed that thermophilic archaea would be expected to have higher GC content within their DNA, because GC pairings have three hydrogen bonds, while AT pairings have only two. Increasing the number of hydrogen bonds would increase the stability of the DNA, thereby increasing the energy required to separate the two strands of DNA.
Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism.Methane production, or methanogenesis, is the only biochemical pathway for ATP generation in methanogens.
Reduced sulfur compounds are oxidized by most organisms, including higher animals and higher plants. [2] Some organisms can conserve energy (i.e., produce ATP) from the oxidation of sulfur and it can serve as the sole energy source for some lithotrophic bacteria and archaea. [3]
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...