Search results
Results from the WOW.Com Content Network
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
The nonideality of the solution is reflected by a slight decrease (roughly 2.2%, 1.0326 rather than 1.055 L/kg) in the volume of the combined system upon mixing. As the percent ethanol goes up toward 100%, the apparent molar volume rises to the molar volume of pure ethanol.
If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl). Mathematically this relationship can be shown by equation: = where c 1 = initial concentration or molarity; V 1 = initial volume
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution. It can also be called a "2 normal" solution. Similarly, for a solution with c (H 3 PO 4 ) = 1 mol/L, the normality is 3 N because phosphoric acid contains 3 acidic H atoms.
normal range of hydronium ions in stomach acid (pH 1.5–3.5) [16] 5.5 mM: upper bound for healthy blood glucose when fasting [17] 7.8 mM: upper bound for healthy blood glucose 2 hours after eating [17] 10 −2: cM 20 mM: neutrinos during a supernova, 1 AU from the core (10 58 over 10 s) [18] 44.6 mM: pure ideal gas at 0 °C and 101.325 kPa [19 ...