Search results
Results from the WOW.Com Content Network
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [ 1 ] [ 2 ] It is generally divided into two subfields: discrete optimization and continuous optimization .
Level-set method; Levenberg–Marquardt algorithm; Lexicographic max-min optimization; Lexicographic optimization; Limited-memory BFGS; Line search; Linear-fractional programming; Lloyd's algorithm; Local convergence; Local search (optimization) Luus–Jaakola
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
Mathematical Optimization Society; Mathematical programming with equilibrium constraints; Max–min inequality; Maximum and minimum; Maximum theorem; MCACEA; Mean field annealing; Minimax theorem; Mirror descent; Mixed complementarity problem; Mixed linear complementarity problem; Moreau envelope; Multi-attribute global inference of quality
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar, the problem becomes a multi-objective optimization one.
D'Hondt method (voting systems) D21 – Janeček method (voting system) Discrete element method (numerical analysis) Domain decomposition method (numerical analysis) Epidemiological methods; Euler's forward method; Explicit and implicit methods (numerical analysis) Finite difference method (numerical analysis) Finite element method (numerical ...
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...