enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generating set of a group - Wikipedia

    en.wikipedia.org/wiki/Generating_set_of_a_group

    The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.

  3. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is

  4. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1) th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α i for some natural number i.

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted ⁠ 0 {\displaystyle 0} ⁠ , and the inverse of ...

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.

  7. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups: k = 2 OEIS sequence A272592 (2 cyclic groups) k = 3 OEIS sequence A272593 (3 cyclic groups) k = 4 OEIS sequence A272594 (4 cyclic groups)

  8. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  9. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    If the modulus is prime, the period of a lag-MWC generator is the order of in the multiplicative group of numbers modulo . While it is theoretically possible to choose a non-prime modulus, a prime modulus eliminates the possibility of the initial seed sharing a common divisor with the modulus, which would reduce the generator's period.