Search results
Results from the WOW.Com Content Network
The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.
In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).
77 is not a multiple of 3, since the sum of its digits is 14, not a multiple of 3. It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate.
60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.
The fundamental theorem of algebra, also called d'Alembert's theorem [1] or the d'Alembert–Gauss theorem, [2] states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part ...
Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).
We successfully raised $584 million in gross proceeds through the issuance of 7.3 million shares at an offering price of $80 per share. We expect that the security will be listed on NASDAQ under ...
All results described in this article are based on Descartes' rule of signs. If p(x) is a univariate polynomial with real coefficients, let us denote by # + (p) the number of its positive real roots, counted with their multiplicity, [1] and by v(p) the number of sign variations in the sequence of its coefficients.