Search results
Results from the WOW.Com Content Network
For example, 13 0 0 has three significant figures (and hence indicates that the number is precise to the nearest ten). Less often, using a closely related convention, the last significant figure of a number may be underlined; for example, "1 3 00" has two significant figures. A decimal point may be placed after the number; for example "1300."
There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions.
A p-box (probability box). A probability box (or p-box) is a characterization of uncertain numbers consisting of both aleatoric and epistemic uncertainties that is often used in risk analysis or quantitative uncertainty modeling where numerical calculations must be performed.
To illustrate, a simple example of this process is to find the mean and variance of the derived quantity z = x 2 where the measured quantity x is Normally distributed with mean μ and variance σ 2. The derived quantity z will have some new PDF, that can (sometimes) be found using the rules of probability calculus. [7]
Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.