enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    The singular points of are those where the "test to be a manifold" fails. See Zariski tangent space. Once the tangent spaces of a manifold have been introduced, one can define vector fields, which are abstractions of the velocity field of particles moving in space. A vector field attaches to every point of the manifold a vector from the tangent ...

  3. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    One is often interested only in C p-manifolds modeled on spaces in a fixed category A, and the category of such manifolds is denoted Man p (A). Similarly, the category of C p-manifolds modeled on a fixed space E is denoted Man p (E). One may also speak of the category of smooth manifolds, Man ∞, or the category of analytic manifolds, Man ω.

  4. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    In Euclidean space, all tangent spaces are canonically identified with each other via translation, so it is easy to move vectors from one tangent space to another. Parallel transport is a way of moving vectors from one tangent space to another along a curve in the setting of a general Riemannian manifold. Given a fixed connection, there is a ...

  5. Parallelizable manifold - Wikipedia

    en.wikipedia.org/wiki/Parallelizable_manifold

    The term framed manifold (occasionally rigged manifold) is most usually applied to an embedded manifold with a given trivialisation of the normal bundle, and also for an abstract (that is, non-embedded) manifold with a given stable trivialisation of the tangent bundle. A related notion is the concept of a π-manifold. [4]

  6. Exterior calculus identities - Wikipedia

    en.wikipedia.org/wiki/Exterior_calculus_identities

    denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold . , denote the tangent spaces of , at the points , , respectively. denotes the cotangent space of at the point .

  7. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The vector fields λ(A), λ(B), λ(C) form a basis of the tangent space at each point of G. Similarly the left invariant vector fields ρ(A), ρ(B), ρ(C) form a basis of the tangent space at each point of G. Let α, β, γ be the corresponding dual basis of left invariant 1-forms on G. [51]

  8. Transversality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Transversality_(mathematics)

    The notion of transversality of a pair of submanifolds is easily extended to transversality of a submanifold and a map to the ambient manifold, or to a pair of maps to the ambient manifold, by asking whether the pushforwards of the tangent spaces along the preimage of points of intersection of the images generate the entire tangent space of the ambient manifold. [2]

  9. Tangent bundle - Wikipedia

    en.wikipedia.org/wiki/Tangent_bundle

    The tangent bundle of the unit circle is trivial because it is a Lie group (under multiplication and its natural differential structure). It is not true however that all spaces with trivial tangent bundles are Lie groups; manifolds which have a trivial tangent bundle are called parallelizable. Just as manifolds are locally modeled on Euclidean ...