enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Endergonic_reaction

    The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous. The progress of the reaction is shown by the line. The change of Gibbs free energy (ΔG) during an endergonic reaction is a positive value because energy is gained (2).

  3. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  4. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The reaction will only be allowed if the total entropy change of the universe is zero or positive. This is reflected in a negative ΔG, and the reaction is called an exergonic process. If two chemical reactions are coupled, then an otherwise endergonic reaction (one with positive ΔG) can be made to happen.

  5. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    The ∆G° can be written as a function of change in enthalpy (∆H°) and change in entropy (∆S°) as ∆G°= ∆H° – T∆S°. Practically, enthalpies, not free energy, are used to determine whether a reaction is favorable or unfavorable, because ∆ H ° is easier to measure and T ∆ S ° is usually too small to be of any significance ...

  6. Exergonic process - Wikipedia

    en.wikipedia.org/wiki/Exergonic_process

    An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. [1] Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆G < 0).

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Free energy is subject to irreversible loss in the course of such work. [1] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...