enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  3. Erdős–Borwein constant - Wikipedia

    en.wikipedia.org/wiki/Erdős–Borwein_constant

    In 1948, Erdős showed that the constant E is an irrational number. [3] Later, Borwein provided an alternative proof. [4] Despite its irrationality, the binary representation of the Erdős–Borwein constant may be calculated efficiently. [5] [6]

  4. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  6. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]

  7. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence. The proof proceeds as follows: either 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is a rational which proves the theorem, or it is irrational (as it turns out to be) and then

  8. Copeland–Erdős constant - Wikipedia

    en.wikipedia.org/wiki/Copeland–Erdős_constant

    Copeland and Erdős's proof that their constant is normal relies only on the fact that is strictly increasing and = + (), where is the n th prime number. More generally, if is any strictly increasing sequence of natural numbers such that = + and is any natural number greater than or equal to 2, then the constant obtained by concatenating "0."

  9. Roth's theorem - Wikipedia

    en.wikipedia.org/wiki/Roth's_theorem

    The proof technique involves constructing an auxiliary multivariate polynomial in an arbitrarily large number of variables depending upon , leading to a contradiction in the presence of too many good approximations. More specifically, one finds a certain number of rational approximations to the irrational algebraic number in question, and then ...