Search results
Results from the WOW.Com Content Network
In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage.Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp.
A resurrected object may be treated the same as other objects, or may be treated specially. In many languages, notably C#, Java, and Python (from Python 3.4), objects are only finalized once, to avoid the possibility of an object being repeatedly resurrected or even being indestructible; in C# objects with finalizers by default are only finalized once, but can be re-registered for finalization.
This is analogous to traditional file management (acquire during open, release by explicit close), and is known as the dispose pattern. This is the basic approach used in several major modern object-oriented languages, including Java, C# and Python, and these languages have additional constructs to automate resource management. However, even in ...
Garbage collection relieves the programmer from doing manual memory management, where the programmer specifies what objects to de-allocate and return to the memory system and when to do so. [2] Other, similar techniques include stack allocation , region inference , and memory ownership, and combinations thereof.
The advantages of RAII as a resource management technique are that it provides encapsulation, exception safety (for stack resources), and locality (it allows acquisition and release logic to be written next to each other). Encapsulation is provided because resource management logic is defined once in the class, not at each call site.
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
The stack is often used to store variables of fixed length local to the currently active functions. Programmers may further choose to explicitly use the stack to store local data of variable length. If a region of memory lies on the thread's stack, that memory is said to have been allocated on the stack, i.e. stack-based memory allocation (SBMA).
In computer programming, create, read, update, and delete (CRUD) are the four basic operations (actions) of persistent storage. [1] CRUD is also sometimes used to describe user interface conventions that facilitate viewing, searching, and changing information using computer-based forms and reports .