enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Most of the algebraic properties of the Christoffel symbols follow from their relationship to the affine connection; only a few follow from the fact that the structure group is the orthogonal group O(m, n) (or the Lorentz group O(3, 1) for general relativity). Christoffel symbols are used for performing practical calculations.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  4. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  5. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    [citation needed] Correction terms were introduced by Elwin Bruno Christoffel (following ideas of Bernhard Riemann) in the 1870s so that the (corrected) derivative of one vector field along another transformed covariantly under coordinate transformations — these correction terms subsequently came to be known as Christoffel symbols.

  6. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    On an n-dimensional Riemannian manifold, the geodesic equation written in a coordinate chart with coordinates is: + = where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols.

  7. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    Objects appearing in the formulas of Gauss, such as the Christoffel symbols, can be given a natural geometric interpretation in this framework. Unlike the more intuitive normal bundle , easily visualised as a tubular neighbourhood of an embedded surface in E 3 , the frame bundle is an intrinsic invariant that can be defined independently of an ...

  8. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold.Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection.

  9. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...