Search results
Results from the WOW.Com Content Network
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144." [6]
For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216. Similarly, by adding instead of subtracting, the same methods can be used to multiply by 11 and 12, respectively (although simpler methods to multiply ...
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The numbers being multiplied are multiplicands, multipliers, or factors. Multiplication can be expressed as "five times three equals fifteen," "five times three is fifteen," or "fifteen is the product of five and three." Multiplication is represented using the multiplication sign (×), the asterisk (*), parentheses (), or a dot (⋅).
The number of operands is the arity of the operation. The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant.
An example of early counting is the Ishango bone, found near the Nile and dating back over 20,000 years ago, which is thought to show a six-month lunar calendar. [6] Ancient Egypt developed a symbolic system using hieroglyphics , assigning symbols for powers of ten and using addition and subtraction symbols resembling legs in motion.
In the usual arithmetic, a prime number is defined as a number whose only possible factorisation is . Analogously, in the lunar arithmetic, a prime number is defined as a number m {\displaystyle m} whose only factorisation is 9 × n {\displaystyle 9\times n} where 9 is the multiplicative identity which corresponds to 1 in usual arithmetic.