enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_method

    In numerical analysis and scientific computing, the GaussLegendre methods are a family of numerical methods for ordinary differential equations. GaussLegendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of GaussLegendre quadrature.

  3. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_quadrature

    For integrating f over [,] with GaussLegendre quadrature, the associated orthogonal polynomials are Legendre polynomials, denoted by P n (x). With the n-th polynomial normalized so that P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [5]

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  5. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the GaussLegendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The GaussLegendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    Legendre functions are solutions of Legendre's differential equation (generalized or not) with non-integer parameters. In physical settings, Legendre's differential equation arises naturally whenever one solves Laplace's equation (and related partial differential equations) by separation of variables in spherical coordinates.

  8. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The GaussLegendre method with s stages has order 2s, so its stability function is the Padé approximant with m = n = s. It follows that the method is A-stable. [34] This shows that A-stable Runge–Kutta can have arbitrarily high order. In contrast, the order of A-stable linear multistep methods cannot exceed two. [35]

  9. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_algorithm

    The GaussLegendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...